Sphere Representations, Stacked Polytopes, and the Colin de Verdière Number of a Graph

نویسندگان

  • Lon Mitchell
  • Lynne Yengulalp
چکیده

We prove that a k-tree can be viewed as a subgraph of a special type of (k + 1)-tree that corresponds to a stacked polytope and that these “stacked” (k + 1)-trees admit representations by orthogonal spheres in Rk+1. As a result, we derive lower bounds for Colin de Verdière’s μ of complements of partial k-trees and prove that μ(G) + μ(G) ≥ |G| − 2 for all chordal G. Yves Colin de Verdière’s graph invariant μ is defined as the maximum nullity over a special class of real symmetric matrices [3]. Among its many interesting properties are that μ is minor monotone and μ(G) ≤ 3 if and only if G is planar. These properties are collected in a recent survey by László Lovász [13] based on an earlier paper with Hein van der Holst and Alexander Schrijver [22].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Colin de Verdière number and graphs of polytopes

The Colin de Verdière number μ(G) of a graph G is the maximum corank of a Colin de Verdière matrix for G (that is, of a Schrödinger operator on G with a single negative eigenvalue). In 2001, Lovász gave a construction that associated to every convex 3-polytope a Colin de Verdière matrix of corank 3 for its 1-skeleton. We generalize the Lovász construction to higher dimensions by interpreting it...

متن کامل

Colin de Verdière number and graphs of polytopes

To every convex d-polytope with the dual graph G a matrix is associated. The matrix is shown to be a discrete Schrödinger operator on G with the second least eigenvalue of multiplicity d. This implies that the Colin de Verdière parameter of G is greater or equal d. The construction generalizes the one given by Lovász in the case d = 3.

متن کامل

The Colin de Verdière Number and Sphere Representations of a Graph

Colin de Verdi ere introduced an interesting linear algebraic invariant (G) of graphs. He proved that (G) 2 if and only if G is outerplanar, and (G) 3 if and only if G is planar. We prove that if the complement of a graph G on n nodes is outerplanar, then (G) n ? 4, and if it is planar, then (G) n ? 5. We give a full characterization of maximal planar graphs with (G) = n ? 5. In the opposite di...

متن کامل

Steinitz Representations of Polyhedra and the Colin de Verdière Number

We show that the Steinitz representations of 3-connected planar graphs are correspond, in a well described way, to Colin de Verdière matrices of such graphs.

متن کامل

Lecture Notes Mpri 2.38.1 Geometric Graphs, Triangulations and Polytopes

These lecture notes on “Geometric Graphs, Triangulations and Polytopes” cover the material presented for half of the MPRI Master Course 2.38.1 entitled “Algorithmique et combinatoire des graphes géométriques”. The other half of the course, taught by Éric Colin de Verdière, focusses on “Algorithms for embedded graphs” [dV]. Announcements and further informations on the course are available onlin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2016